
Journal of Magnetic Resonance 209 (2011) 250–260
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
Numerical simulation of NQR/NMR: Applications in quantum computing

Denimar Possa, Anderson C. Gaudio, Jair C.C. Freitas ⇑
Departamento de Fı́sica, Universidade Federal do Espı́rito Santo, 29075-910 Vitória, ES, Brazil

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 December 2010
Revised 18 January 2011
Available online 26 January 2011

Keywords:
NQR
NMR
Quantum computing
Numerical simulation
Density matrix
Average Hamiltonian
1090-7807/$ - see front matter � 2011 Elsevier Inc. A
doi:10.1016/j.jmr.2011.01.020

⇑ Corresponding author.
E-mail address: jairccfreitas@yahoo.com.br (J.C.C.
A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear
magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming
especially applications in quantum computing. The program makes use of the interaction picture to com-
pute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of
each interaction. This makes the program flexible and versatile, being useful in a wide range of experi-
mental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR
experiments. Some conditions specifically required for quantum computing applications are imple-
mented in the program, such as the possibility of use of elliptically polarized radiofrequency and the
inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples
dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the pro-
posal of experiments to create quantum pseudopure states and logic gates using NQR. The program and
the various application examples are freely available through the link http://www.profanderson.net/files/
nmr_nqr.php.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Computer programs for numerical simulation are an important
tool for analysis and design of nuclear magnetic resonance (NMR)
experiments and are widely used by the scientific community,
especially regarding solid-state NMR [1–7]. Most of these pro-
grams are based on the calculation of the temporal evolution of
the density operator corresponding to the spin system after a
sequence of radiofrequency (RF) pulses. The main mathematical
difficulty of this problem stems from the explicit time dependence
of the RF Hamiltonian; in general this difficulty is removed by
describing the dynamical evolution of the system as viewed from
the so-called rotating reference frame [8,9]. In its conventional
form, this approach is limited to systems presenting a symmetry
compatible with the rotating reference frame, e.g., for nuclear spins
subjected to an intense and static magnetic field, where the Zee-
man interaction is dominant and the other interactions are treated
as small perturbations. In other cases, where this symmetry is not
present, a more general description of time-dependent interactions
is required, involving the use of interaction frames (of which the
rotating frame is a particular case) [10]. In the appropriate interac-
tion frame, the quantum states evolve in time only due to the RF
Hamiltonian, whatever the form of the static Hamiltonian (before
the application of the RF pulses). Under certain conditions, the RF
Hamiltonian is nearly stationary in the interaction frame and the
ll rights reserved.
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problem of temporal evolution of states can be solved by using
average Hamiltonian theory [11,12]. This flexibility in the
description of the system dynamics enables the development of
simulation programs of broad applicability, which can be used
for high-field NMR spectroscopy as well as for other magnetic
resonance techniques, where the Zeeman interaction is not the
dominant one, as it is the case of nuclear quadrupole resonance
(NQR) [13–16].

This paper presents a program for the numerical simulation of
NQR and NMR experiments developed using the Mathematica soft-
ware [17]. The program is of high flexibility, allowing the simula-
tion of experiments for nuclei with arbitrary spin, taking into
account the combination of quadrupole and Zeeman interactions
with no restriction on the relative size of each coupling and for
any orientation of the corresponding principal axes. Moreover, it
can be easily generalized and expanded to include other interac-
tions. Another important feature of the program is the possibility
to include RF pulses linearly polarized in any direction, as well as
combinations of them, allowing then the simulation of experi-
ments involving multifrequency pulses and elliptically polarized
pulses. The orientation of the detecting coil is also arbitrary, allow-
ing the use of different directions for excitation and phase-
sensitive detection. As the spin dynamics is calculated by means
of average Hamiltonian theory, higher-order effects can be easily
addressed, which makes possible the simulation of experiments
involving two-photon transitions in NQR [18,19].

These features are especially important for the design of exper-
iments aiming the use of NQR as a tool to implement ensemble
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quantum computing. It is well known that high-field NMR, both for
liquids and liquid crystals, provides an efficient way to implement
ensemble quantum computing operations [20–37]. Both NMR and
NQR have drawbacks related to the intrinsic limitations of using
pseudopure states in ensembles, as opposed to ‘‘true’’ quantum
computing systems involving pure quantum states, and to the
scalability to large numbers of q-bits. Most reports of quantum
computing by bulk NMR to date involve small number of q-bits:
up to ca. 10 for coupled spin 1/2 systems and up to 3 for quadru-
polar nuclei [37]. Nonetheless, bulk NMR remains the simplest
experimental technique used for demonstration of quantum
computing principles and for simulation of quantum problems in
systems with small number of q-bits (typically 2–5) [20,21,23,
31,33,34,37]. Given the similarity to NMR, one can foresee the
same scenario regarding the use of NQR for quantum computing,
where the number of q-bits is limited to 3 (at least for pure
NQR). However, as with NMR, NQR can be quite useful as an exper-
imentally simple method for demonstrating quantum information
processing and for performing quantum simulations. The main po-
tential advantage of NQR (either under zero or small external mag-
netic field) as compared to high-field NMR is the much reduced
cost of the spectrometers used for NQR experiments (which do
not need superconducting magnets). Thus, it is worth investigating
about the possibilities of use of NQR for quantum computing,
which requires the development of methods for simulation of
NQR dynamics. Furman et al. [38] proposed a method for obtaining
pseudopure quantum states for two q-bits using NQR without any
static magnetic field, but employing two RF fields with different
phases, amplitudes and directions. This method is not easy to
implement and, to the best of our knowledge, no experimental
realization of it has ever appeared. In this work, we propose a dif-
ferent approach to the use of NQR for quantum computing, involv-
ing the use of circularly polarized RF fields and double-quantum
excitation for the creation of pseudopure states and of simple log-
ical gates. As these methods have already been implemented
experimentally in a different NQR context [18,19,39,40], the exten-
sion of their use to encompass experiments related to quantum
computing is apparently straightforward. Thus, some of the various
simulation examples presented in this work describe concrete pro-
posals to perform quantum computing tasks in NQR experiments
involving systems with 2 and 3 q-bits.

2. Theory

This section provides a brief guide to calculate the dynamics of
an ensemble of nuclear spins (possessing nuclear electric quadru-
pole moment) submitted to static quadrupole plus Zeeman inter-
actions and to a perturbative RF field [10]. By using average
Hamiltonian expansion up to second-order, both single- and dou-
ble-quantum transitions can be excited. Using the density operator
formalism, the initial state of thermal equilibrium (in the high-
temperature approximation) is given by

qeq ¼
1
Z
b1 � H0

kT

� �
; ð1Þ

where H0 is the time-independent Hamiltonian corresponding to
the unperturbed system, and Z is the canonical partition function.
With application of a time-dependent perturbation, e.g., an RF field
described by the Hamiltonian H1(t), the temporal evolution of the
density operator is given by

qðtÞ ¼ UðtÞqð0ÞUyðtÞ; ð2Þ

where the time-evolution operator U satisfies the equation

i�h
dUðtÞ

dt
¼ HðtÞUðtÞ; ð3Þ
with
HðtÞ ¼ H0 þ H1ðtÞ: ð4Þ

The explicit time dependence of the operator H makes relatively
complicated the solution of Eq. (3). This problem is commonly ap-
proached by using the interaction picture [10,11], defined by the
transformationeAðtÞ ¼ exp

iH0t
�h

� �
AsðtÞ exp

�iH0t
�h

� �
; ð5Þ

where As and eA correspond to the same operator described in the
Schrödinger and in the interaction pictures, respectively. In the
interaction picture, the dynamics of the system is dictated solely
by the perturbation Hamiltonian eH1. The time dependence of this
Hamiltonian in the interaction picture is then removed by using
average Hamiltonian theory [41,42]. Keeping the two terms of low-
est order in the Magnus expansion [43], we obtain

eH1
ð0Þ ¼ 1

T

Z T

0
dt0 eH1ðt0Þ; ð6Þ

eH1
ð1Þ ¼ �i

2T

Z T

0
dt0
Z t0

0
dt00 eH1ðt0Þ; eH1ðt00Þ
h i

; ð7Þ

where the integration limit T corresponds to the time of application
of the perturbation (e.g., the duration of an RF pulse).

Using eH1 ¼ eH1
ð0Þ þ eH1

ð1Þ in Eq. (4), the solution for the time-
evolution operator is

eUðtÞ ¼ exp
�ieH1t

�h

 !
: ð8Þ

The density operator at any time t just after the application of the
perturbation is then calculated by the expression

eqðtÞ ¼ exp
�ieH1t

�h

 !eqð0Þ exp
ieH1t

�h

 !
: ð9Þ

Generally, the dominant Hamiltonian H0 contains all time-indepen-
dent interactions affecting the nuclear spin. In the cases of interest
for the present discussion, these reduce to Zeeman and quadrupole
couplings:
H0 ¼ HQ þ HZ : ð10Þ
These Hamiltonians will be described in terms of a cartesian refer-
ence frame, designated as the laboratory system (LAB).

The electric field gradient (EFG) acting on the nuclear site is de-
fined by the tensor Vab = @2V/oaob, where a and b are cartesian
coordinates and V is the classical electrostatic potential. This tensor
is real, symmetric and traceless [11], being thus completely deter-
mined by five independent components. In the principal axes sys-
tem (PAS) of the tensor Vab (i.e., in the axes system where the
tensor is diagonal), only two components are required, which are
conventionally given by the EFG magnitude eq = VZZ and the asym-
metry parameter g = (VYY � VXX)/VZZ. Therefore, the tensor Vab can
be described by these two parameters together with the Euler an-
gles that relate the PAS to the LAB system (aQ, bQ and cQ). Thus, the
quadrupole Hamiltonian in the LAB system is given by [11]

HQ ¼
eQ

Ið2I�1Þ

 
1
2

3I2
z �~I2

� �
V2;0

þ
ffiffiffi
6
p

4
IzIþþ IþIzð ÞV2;�1� IzI�þ I�Izð ÞV2;þ1þ I2

þV2;�2þ I2
�V2;þ2

� �!
;

ð11Þ

where Q is the nuclear electric quadrupole moment, I is the nuclear
spin quantum number, Iz, ~I, I+ and I� are the corresponding spin
operators and

V2;0 ¼
eq
2

3 cos2 bQ � 1
2

þ
g sin2 bQ e2icQ þ e�2icQ

� �
4

 !
; ð12Þ



Fig. 1. Diagram illustrating the operation of the main function (Pulse) in the
developed program.
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V2;�1 ¼
eq
2
�

ffiffiffi
3
8

r
sin 2bQ e�iaQ þ gffiffiffi

6
p �

1� cos bQ

2
sin bQ e�i aQ�2cQð Þ

� 

þ
1� cos bQ

2
sin bQ ei �aQþ2cQð Þ

��
ð13Þ

and

V2;�2 ¼
eq
2

ffiffiffi
3
8

r
sin2 bQ

� �
e�2iaQ þ gffiffiffi

6
p ð1� cos bQ Þ

2

4
e�2i aQ�cQð Þ

  

þ
ð1� cos bQ Þ

2

4
e2i �aQþcQð Þ

!!
: ð14Þ

The quadrupole coupling constant is defined by CQ = e2qQ/⁄(in units
of angular frequency).

In the LAB system, the Zeeman Hamiltonian is given by

HZ ¼ ��hxL sin hZ cos /ZIx þ sin hZ sin /ZIy þ cos hZIz
� �

; ð15Þ

where hZ and /Z are, respectively, the polar and azimuthal angles of
the magnetic field B0 with respect to the LAB system, and xL = cB0 is
the Larmor frequency.

The time-dependent Hamiltonian H1 can be written, in general,
as the sum of several linearly polarized RF Hamiltonians, according
to equation

H1 ¼
X

i

HRFi
; ð16Þ

where

HRFi
ðtÞ ¼ ��hx1i

sin hRFi
cos /RFi

Ix þ sin hRFi
sin /RFi

Iy þ cos hRFi
Iz

� �
� cos xRFi

t �ui

� �
; ð17Þ

where hRFi
and /RFi

are, respectively, the polar and azimuthal angles
of the oscillating magnetic field BRFi

with respect to the LAB system,
and x1i

; xRFi
and ui are the amplitude, angular frequency and

phase of each RF field, respectively.
All Hamiltonians presented above were defined seeking as

greater generality as possible, thus presenting a large number of
free parameters. Differently from many programs commonly used
for simulation of NMR or NQR experiments, in our approach there
is no need to decide beforehand which interaction (Zeeman or
quadrupole) is the dominant one. The change to the interaction
picture (Eq. (5)) is completely general and allows situations as dis-
tinct as zero-field NQR and high-field NMR to be treated within the
same theoretical framework. This high degree of freedom facili-
tates the computational description of a large number of diverse
experiments, as described below.

3. Programming interface

The implementation of the equations described in the preceding
section is performed using the software Mathematica – version 7.0
[17]. The temporal evolution of the system is obtained by the func-
tion Pulse[q(0)], which returns the density matrix q(tp) after the
application of an RF pulse to the initial state q(0). The implemen-
tation of this function should be performed after defining the
parameters H0, H1 and TP (the latter corresponding to the dura-
tion of the RF pulse). To facilitate the calculation of the matrices
H0 and H1, functions were developed to determine the Hamilto-
nian of the main interactions involved, for any spin value. The
function HQ[spin] returns the matrix of the quadrupole Hamilto-
nian, given the parameters alphaQ, betaQ, gammaQ, cQ and
eta.1 The function HZ[spin] returns the matrix of the Zeeman
1 The names of all variables used in the source code were chosen as closely as
possible to the symbols defined in the preceding section.
Hamiltonian, given the parameters wL, thetaZ and phiZ. The func-
tion HRF[spin] returns the matrix of the Hamiltonian corresponding
to a linearly polarized RF pulse, given the parameters wRF, w1,
phase, thetaRF and phiRF. More sophisticated pulses, such as mul-
tifrequency pulses or those involving RF fields with elliptical polari-
zation, can be constructed by setting H1 as an appropriate
superposition of functions HRF [spin], according to Eq. (16). This
point will be exemplified later. A diagram representing the basic
operation of this program is shown in Fig. 1.

Other useful functions for the analysis and simulation of NQR/
NMR experiments were also created. The function Grad[q(0)] re-
turns the state after applying a pulsed magnetic field gradient
along the z-axis. The parameters of this function are the pulse
duration TG and the rate of spatial variation of the magnetic field
G. The function FID[rho] returns a time-dependent oscillating
function, representing the free induction decay (FID) measured
by a detecting coil placed in a direction determined by the param-
eters thetaDet, phiDet (polar and azimuthal angles of the axis of
the detecting coil with respect to LAB system, respectively). To in-
clude transverse relaxation effects, the parameter relaxation (rate
of relaxation) must be defined before the application of the
function FID[rho]. For simplicity, the relaxation rates for all
single-quantum coherences are considered identical. Functions
FourierPhase[rho], FourierQuad[rho] and FourierAbs[rho]
return, respectively, the real part, imaginary part and absolute
value of the Fourier transform of FID[rho], thus allowing the
analysis of experiments involving phase-sensitive detection in
the frequency-domain. The visualization of the corresponding
NMR/NQR spectra and other plots can be easily accomplished by
using the usual features available in Mathematica (as exemplified
below).

The complete source code of the program here presented is
freely available for download [44]. Also included in the referred
website are the details (specific source codes, figures, etc.) corre-
sponding to the examples described in the next sections.

4. Examples

This section gives examples of numerical simulation of some
typical NMR/NQR experiments, including zero- or low-field NQR
and high-field NMR. With these examples, we wish to demonstrate
how to use the basic functions of the program, highlighting its ver-
satility, ease of use and broad range of applicability to different
types of magnetic resonance experiments involving quadrupolar
nuclei.

4.1. Nuclear quadrupole resonance

The first examples discussed here involve the recording of NQR
spectra for a system of nuclei with spin 3/2 in an EFG with axial
symmetry under a small Zeeman perturbation. This is the case of
35Cl nuclei in KClO3 and NaClO3, for example [13,45]. For the pure



Fig. 2. (a) Source code for the simulation of 35Cl NQR spectra in a single crystal of KClO3. The symmetry axis of the EFG tensor is defined as the z-axis. The RF field is linearly
polarized along the x-axis, near resonance (xRF = xQ). The detection is performed with the same coil used for excitation (hDet = hRF and /Det = /RF). The static magnetic field is
small (xL�xQ) and the angle it makes with the EFG symmetry axis is hZ = 0 (b), hZ = p/4 (c) or hZ ¼ arctan

ffiffiffi
2
p

(d).
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quadrupole Hamiltonian, the states ±3/2 are degenerate, as well as
the states ±1/2, so that the NQR spectrum contains only a single
line at a frequency in the range 28-29 MHz. A small Zeeman field
(�10 G) causes a frequency splitting (of a few kHz) and make the
first-order corrected eigenvectors as linear superpositions of angu-
lar momentum eigenvectors [13]. The number, position and inten-
sity of these lines are dependent on the angle hZ between the static
magnetic field and the EFG symmetry axis. This problem can then
be completely understood by using stationary first-order perturba-
tion theory and it serves as a good example to illustrate the oper-
ation of our simulation program.

Potassium chlorate (KClO3) has a monoclinic structure, with
two molecules per unit cell. The symmetry axes of the EFG tensors
at the 35Cl nuclei of each molecule are parallel to one another, so
that these molecules behave identically for any direction of the
externally applied static magnetic field [45]. Fig. 2a shows a source
code for simulation of the 35Cl NQR spectrum in a single crystal of
KClO3 (xQ/2p = 28.1 MHz). Fig. 2b–d shows three simulated spec-
tra obtained for three different values of hZ. These spectra can be
directly compared to experimental results long known in the
NQR literature [13,45].

Sodium chlorate (NaClO3) possesses cubic structure, with four
molecules per unit cell, all with the same 35Cl NQR frequency
(xQ/2p = 29.93 MHz). However, unlike KClO3, the symmetry axes
of the EFG tensors at the 35Cl nuclei corresponding to these four
molecules are not parallel to each other; instead, they are parallel
to each of the diagonals of the unit cell cube [13,45]. For a given
direction of the externally applied static magnetic field, there will
be four angles between this field and each of the EFG symmetry
axes (some of which can coincide). Thus, each crystallographically
distinct site must be treated separately. For the numerical simula-
tion, one should proceed similarly to the previous example for each
site and add the results in the end (either in the time or in the fre-
quency domain). This problem is handled in the source code [44]
by keeping the static magnetic field fixed at a given direction (com-
mon to all sites) and specifying the angular parameters of the
quadrupole interaction for each site (aQ = p/4, 3p/4, 5p/4 or 7p/
4; bQ ¼ arctan

ffiffiffi
2
p

and cQ = 0 for all sites). In general, the spectrum
has 16 lines (four for each distinct site), but for some specific ori-
entations of the magnetic field there can be some coincidence in
the angles between the magnetic field and the EFG symmetry axes.
Thus, the number of observed lines can be reduced [13,45], as illus-
trated in the simulated spectra shown in Fig. 3.

We now turn to a more sophisticated NQR experiment, involv-
ing two-photon transitions. The occurrence of these transitions can
be understood by using average Hamiltonian theory up to the first-
order term in the Magnus expansion. Two-photon excitation
occurs in general with two RF fields whose frequencies sum to or



Fig. 4. Simulation of Zeeman-perturbed 35Cl NQR spectra of KClO3 with two-photon excitation. The symmetry axis of the EFG tensor is defined as the z-axis. An external
magnetic field of 8 G was applied with hZ = p/6. (a) Detection with a coil perpendicular to the excitation coil (hRF = hDet = p/2; /RF = /Det + p/2). (b) Detection with the same
excitation coil (hRF = hDet = p/2; /RF = /Det).

Fig. 3. Simulation of Zeeman-perturbed 35Cl NQR spectra of NaClO3 single crystal: (a) hZ = p/4 and /Z = p/3; (b) hZ = 0 and /Z = 0; (c) hZ = p/4 and /Z = 0 and (d) hZ ¼ arctan
ffiffiffi
2
p

and /Z = p/4. The other parameters are the same as in Fig. 2a.

254 D. Possa et al. / Journal of Magnetic Resonance 209 (2011) 250–260
differ by the resonance frequency [42]. Eles & Michal demonstrated
the two-photon excitation in 35Cl NQR of NaClO3 and KClO3 single
crystals using RF pulses applied at half the NQR frequency. Signals
due to both, single- and double-quantum coherences were de-
tected, with application of a small static magnetic field. This exper-
iment can be easily simulated with the program presented in this
work, using input parameters similar to the ones given in Fig. 2a,
but setting xRF = xQ/2 (i.e., excitation at half the NQR frequency).
Two examples of simulated spectra obtained with two-photon
excitation are given in Fig. 4. These spectra can be compared to
the experimental results given in Fig. 6 of Ref. [19].
Fig. 5. Simulation of high-field 23Na NMR spectrum of NaClO3 single crystal. The
quadrupole coupling constant is approximately 0.80 MHz and the Larmor frequency
is 132 MHz.
4.2. High-field NMR

As mentioned above, one of the most useful features of the pro-
gram presented here is its versatility, allowing that similar proce-
dures can be used for simulation of NQR (where the quadrupole
interaction is dominant), or high-field NMR experiments (where
the Zeeman interaction is dominant) or even in cases where both
interactions have comparable magnitude. As an example of simu-
lation of high-field NMR spectrum of a quadrupolar nucleus,
Fig. 5 presents the simulated 23Na NMR spectrum of NaClO3 single
crystal [46]. In this case, each crystallographically inequivalent
23Na nucleus gives rise to a triplet, with the central transition (be-
tween the states ±1/2, which is not affected by the quadrupole
interaction to first-order) flanked by two satellites. As there are
four molecules per unit cell in this crystal, the spectrum shows a
strong central line (consisting of the superposition of the four cen-
tral transitions) and four pairs of satellites. An experimental spec-
trum to be compared with this simulation can be found in Fig. 3 of
Ref. [46].

Another quite interesting example dealing with spin dynamics
of quadrupolar nuclei in high-field NMR was provided very



Fig. 6. Source code (a) and simulated results (b) corresponding to the flip angle dependence of the intensities of satellite and central transitions for spin 3/2 nuclei in a single
crystal, starting with the populations associated with both satellite transitions inverted and with non-selective excitation of the spectrum.

Fig. 7. Simulated intensity plots for the flip angle dependence of the intensity of
each of the several transitions for spin 5/2 nuclei in a single crystal, starting with
the consecutive inversion of the populations of the two satellite transitions at one
side of the central transition and with non-selective excitation of the spectrum.
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recently by Nakashima et al., who described the pulse response of
half-integer spin quadrupolar nuclei in single crystals starting from
general initial states (not necessarily corresponding to thermal
equilibrium) [47]. This subject is of high interest considering the
many sensitivity enhancement methods currently used for half-
integer spin quadrupolar nuclei that are based upon population
transfers. Most of these methods involve the saturation or inver-
sion of satellite transitions (achieved by pulse trains or by adiabatic
inversion pulses), which leads to an enhanced population differ-
ence for the selectively excited/observed central transition [48–
51]. Nakashima et al. studied the effect of observe pulse flip angle
on the intensities of the satellite and central transitions in NMR of
quadrupolar nuclei in single crystals, using non-selective excita-
tion and starting from non-equilibrium initial states. The popula-
tions corresponding to the satellite transitions were inverted
using hyperbolic secant (HS) pulses. Such results can be easily sim-
ulated using the program presented in this work, by starting from
an initial density operator with inverted populations correspond-
ing to the satellite transitions. For spin 3/2, the x-magnetization



Fig. 8. (a) Source code excerpt used to implement the pulse sequence that generates the pseudopure state j01i in a 2 q-bit system associated with high-field 23Na NMR in a
liquid crystal. (b)–(e) Simulated 23Na NMR spectra for the four pseudopure states of the computational basis. The numerical values of the experimental parameters were
taken from [26].
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can be decomposed into three components, referring to the two sa-
tellite transitions M1;2

x and M3;4
x and to the central transition M2;3

x ,
and can be calculated in terms of fictitious spin-1/2 operators Irs

x

[52,53] by equations

M1;2
x ðtÞ

D E
/ Tr qðtÞ

ffiffiffi
3
p

I1;2
x ðtÞ

� �
; ð18Þ

M2;3
x ðtÞ

D E
/ Tr qðtÞ2I2;3

x ðtÞ
� �

; ð19Þ

and

M3;4
x ðtÞ

D E
/ Tr qðtÞ

ffiffiffi
3
p

I3;4
x ðtÞ

� �
: ð20Þ

Fig. 6a shows the complete code to perform the simulation of
the flip angle dependence of the 23Na NMR intensities in NaNO3

single crystal. The initial state was constructed by inverting the
populations of states j3/2i and j1/2i, as well as those of states
j�3/2i and j�1/2i; the system was excited by a non-selective RF
pulse with xRF = xL, for various values of tp (or flip angle). The sim-
ulation result is shown in Fig. 6b, which can be compared to the
calculations and experimental results shown in Fig. 3 of reference
[47]. A similar analysis can be performed for spin 5/2 nuclei, as
done by Nakashima et al. using 27Al NMR measurements in a single
crystal of Al2O3. Fig. 7 shows the result of our simulations, which
can be directly compared to the calculations shown in Fig. 6 of ref-
erence [47]. The initial state was obtained by inversion of the pop-
ulations of states j�5/2i and j�3/2i, followed by inversion of the
populations of states j�3/2i and j�1/2i. All procedures to perform
the simulation are similar to the previous example.
4.3. Quantum computing by NMR

The examples discussed so far involved the use of single and
non-selective RF pulses. The examples presented in this section
show how to simulate experiments making use of more elaborated
pulse sequences, which can be non-selective (‘‘hard’’) or selective
(‘‘soft’’). The use of these pulse sequences is especially important
in the context of quantum computing, where precise manipulation
of populations and coherences in the density operator is required.

Quantum computing involves the handling of quantum systems
to perform data processing tasks. In NMR, this is accomplished
through the application of specific RF pulses (logic gates) on
ensemble states adequately prepared, called pseudopure states
[20]. These states are characterized by having all populations in
their respective density operators equalized, except for one, while
all coherences are zero. In the next examples, we shall monitor the
achievement of pseudopure states and application of basic logic
gates for systems of quadrupolar nuclei.

Khitrin & Fung showed how to obtain pseudopure states in a
2 q-bit system, using high-field 23Na NMR (spin = 3/2) in a liquid
crystal [26]. The equalization of the populations was achieved
through a sequence of selective RF pulses exciting either single-
or double-quantum transitions. Undesirable coherences were
eliminated by applying pulsed magnetic field gradients. The signal
was detected after application of a hard reading pulse (p/20). All
these steps can be implemented in our simulation program by suc-
cessive application of the function Pulse, as exemplified in the
source code shown in Fig. 8a. The simulated spectra associated



Fig. 10. Energy level diagram for a spin 3/2 nucleus coupled to an axially symmetric
EFG, with zero applied magnetic field (pure NQR). The selective pulses defined in
Table 1 are indicated.

Table 1
Designation of selective pulses for a system of spin 3/2 nuclei in pure NQR.

Single quantum Double quantum

Pulse Helicity Frequency (xQ) Pulse Helicity Frequency (xQ)

P01 + 1 P02 + 0.5
P23 � 1 P13 � 0.5

Fig. 9. (a) Simulation of the evolution of populations in a high-field NMR
experiment for a nucleus with spin 7/2 (3 q-bit system) following a multifrequency
pulse. For tp � 2.7 ms all populations are equalized, except the one corresponding to
m = 7/2, which corresponds to the pseudopure state j000i. (b) Simulated 133Cs NMR
spectra corresponding to thermal equilibrium (above) and to the pseudopure state
j000i (below).

Fig. 11. Schematic population diagram representing the creation of the pseudopure
state j11i for a system of spin 3/2 nuclei in pure NQR.
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with the four pseudopure states are exhibited in Fig. 8b–e. The cor-
responding experimental spectra can be found in Fig. 2 of Ref. [26].

In another study, Khitrin et al. [27] obtained pseudopure states
for a 3 q-bit system using 133Cs NMR (spin = 7/2) in a liquid crystal
under strong magnetic field. In this case the experiments employed
multifrequency RF pulses, so that all population changes were
achieved simultaneously, providing a considerable time saving.
Multifrequency pulses can be implemented in the program here
described by defining separately the Hamiltonians for each RF fre-
quency and setting H1 as the sum of them all (see Eq. (16)).To cre-
ate the pseudopure state associated with m = 7/2, for example, the
equalization of all other populations is achieved with a single pulse
consisting of the superposition of the six harmonics corresponding
to the six transition frequencies x12, x23, x34, x45, x56 and x67,
with amplitudes proportional to 0.81, 0.93, 1, 1.03, 1.04 and 1.06,
respectively. The optimum duration of this pulse (TP) can be ob-
tained following the dynamics of population changes, as shown
in the plot exhibited in Fig. 9a, which was constructed using our
program features; a similar plot, obtained using other simulation
procedures, was also presented in Fig. 2 of Ref. [27]. After this mul-
tifrequency pulse, a pulsed magnetic field gradient is used to elim-
inate the coherences, leading to the desired pseudopure state
(Fig. 9(b)).
4.4. Quantum computing by NQR

The examples given in this subsection deal with the use of NQR
for implementation of ensemble quantum computing, following in
general terms the methods well established in high-field NMR [20]
but adapting all procedures to the different dynamics involved in
NQR experiments. These examples constitute original proposals
for creation of pseudopure states and implementation of logic
gates in systems where the dominant interaction is the quadru-
pole coupling between a nucleus with spin >1/2 and an axially
symmetric EFG. The manipulation of the ensemble quantum states
is achieved by using selective RF pulses with circular polarization.
In fact, the use of circularly polarized RF provides a mechanism for
selective excitation in NQR with no analogous in high-field NMR.
An RF pulse with circular polarization around the z-axis can be de-
scribed by the sum of two linearly polarized Hamiltonian terms,
according to equation

H�1 ðtÞ ¼ ��hx1Ix cos xRFt � �hx1Iy cos xRFt � p
2

� �
: ð21Þ

In keeping with the principle of conservation of angular momen-
tum, Hþ1 excites only transitions with increasing z-component
(Dm > 0), while H�1 excites only transitions with Dm < 0.

In pure NQR (i.e., with no applied magnetic field) of a system of
spin 3/2 nuclei coupled to an axially symmetric EFG, such as 35Cl
nuclei in KClO3 single crystal, the levels ±3/2 are degenerate, as
well as the levels ±1/2, so that the frequencies of single-quantum
transitions ð3=2$ 1=2 and �3=2$ �1=2Þ are identical; the same
applies to the double-quantum transitions ð3=2$ �1=2 and
�3=2$ 1=2Þ, as shown Fig. 10. However, these transitions can
be distinguished (and selectively excited/detected) by using RF
pulses circularly polarized around the symmetry axis of the EFG,
due to differences in Dm signs. The use of circularly or, more gen-
erally, elliptically polarized RF pulses has been widespread in NQR
experiments, especially with the aim of achieving selective excita-
tion or increasing sensitivity [39,40,54]. These RF fields can be gen-
erated using crossed coils or birdcage resonators, as it is usual in
magnetic resonance imaging [18,40,55].



Fig. 12. Source code for simulating the experiment for creation of the pseudopure state j11i in the case of a system of spin 3/2 nuclei in pure NQR.

Fig. 13. Real part of the density matrices corresponding to the four pseudopure states of the computational basis, obtained by numerical simulation, in the case of a system of
spin 3/2 nuclei in pure NQR.
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In the case of spin 3/2 nuclei, the single-quantum transitions are
excited using on-resonance pulses (xRF = xQ), whereas the double-
quantum transitions are obtained by excitation at half the reso-
nance frequency (xRF = xQ/2) [19]. The selective pulses are defined
in Table 1. This 4-level system can be used to simulate a system of
2 q-bits, defined by: j3/2i = j0i = j00i; j1/2i = j1i = j01i; j�1/
2i = j2i = j10i; j � 3/2i = j3i = j11i.

Pseudopure states for this system can be obtained by a proce-
dure of temporal averaging, similarly to what is done in high-field
NMR experiments [56,57]. The pseudopure state j3i = j11i, for
example, can be obtained by adding the density operators resulting
from three different experiments, as shown below:

q3 ¼ qeq þ P01ðpÞ 	 qeq þ P02ðpÞ 	 qeq: ð22Þ

The first term in the sum above is simply the thermal equilibrium
state; the second and third ones are obtained from the equilibrium
state by application of the inversion pulses P01 and P02, respectively.
A diagram showing schematically the changes in populations of the
energy levels resulting from each step in the above sequence is
shown in Fig. 11. The source code to simulate this experiment is gi-
ven in Fig. 12. The other pseudopure states can be obtained by
methods similar to Eq. (22), just by changing appropriately the
polarization state of each pulse. Fig. 13 shows the density matrices
corresponding to the four pseudopure states obtained following this
method, as simulated using source codes similar to the one given in
Fig. 12. Single q-bit rotations can also be implemented by using
selective single- and double-quantum RF pulses. The C-Not gate
with control on the first q-bit (i.e., an operation that inverts the
second q-bit if and only if the first q-bit is 1) is achieved by the sin-
gle-quantum pulse P23(p). On the other hand, the C-Not gate with
control on the second q-bit is given by the double-quantum pulse
P13(p).

Our last example shows how to obtain a pseudopure state in a
3 q-bit system using pure NQR, in an ensemble of spin 7/2 nuclei
subjected to an axially symmetric EFG. The population diagrams
corresponding to the thermal equilibrium state and to a pseudo-
pure state are shown in Fig. 14. The respective frequencies and
helicities of the selective pulses for this system are defined in Table
2. Pseudopure states can be obtained by a sequence of selective
pulses followed by a pulsed magnetic field gradient G. As an exam-
ple, the state j0i = j000i is obtained by the following sequence S:

S ¼ P57ðpÞ 	 P35ðarccosð1=3ÞÞ 	 P12ðp=2Þ 	 P45ðp=2Þ 	 P67ðp=2Þ 	 G:
ð23Þ



Fig. 14. Schematic population diagram representing (a) the thermal equilibrium state and (b) the pseudopure state j000i, obtained by the pulse sequence given in Eq. (23), in
the case of a system of spin 7/2 nuclei in pure NQR.

Table 2
Designation of selective pulses for a system of spin 7/2 nuclei in pure NQR.

Single quantum Double quantum

Pulse Helicity Frequency (xQ) Pulse Helicity Frequency (xQ)

P01 + 3 P02 + 2.5
P12 + 2 P13 + 1.5
P23 + 1 P24 + 0.5
P45 � 1 P35 � 0.5
P56 � 2 P46 � 1.5
P67 � 3 P57 � 2.5

Fig. 15. Real part of the density matrix corresponding to the pseudopure state
j000i, obtained by numerical simulation, in the case of a system of spin 7/2 nuclei in
pure NQR.
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Different from the procedure used in the previous example, here we
do not use time averaging; instead, spatial averaging is provided by
applying the pulsed magnetic field gradient, which also leads to
zero first-order coherences [22]. The density matrix corresponding
to the pseudopure state obtained following the sequence S above
is shown in Fig. 15, as simulated using the program presented in
this work; the other pseudopure states can be prepared by similar
procedures.
5. Conclusions

The various examples discussed above show the usefulness and
versatility of the simulation program for NQR/NMR experiments
presented here. First, several examples of Zeeman-perturbed NQR
as well as quadrupole-perturbed high-field NMR experiments were
addressed, involving single- and double-quantum transitions, mul-
tifrequency pulses, circularly polarized RF pulses and other fea-
tures. Finally, the last examples presented original proposals for
implementation of quantum computing using pure NQR in systems
of nuclei with spin 3/2 or 7/2 (corresponding to 2 or 3 q-bits,
respectively). These results show that NQR can indeed be useful
as a low-cost and easy experimental technique for demonstration
of simple quantum computing tasks and simulations of small
quantum systems. Both proposals made use of circularly polarized
RF pulses and single- and double-quantum transitions, which were
straightforwardly simulated using the program here presented.
The experimental implementation of these methods is in progress,
involving especially designed RF probes with capability of excita-
tion and detection of circularly polarized RF.
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